If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-40x=4=0
We move all terms to the left:
x^2-40x-(4)=0
a = 1; b = -40; c = -4;
Δ = b2-4ac
Δ = -402-4·1·(-4)
Δ = 1616
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1616}=\sqrt{16*101}=\sqrt{16}*\sqrt{101}=4\sqrt{101}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-4\sqrt{101}}{2*1}=\frac{40-4\sqrt{101}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+4\sqrt{101}}{2*1}=\frac{40+4\sqrt{101}}{2} $
| 2(x+5)^2-7=143 | | ^(2)-4)^(2)=x4 | | 180n=15 | | (x2-4)2=x4 | | 66=6x-21 | | -3=11r+68-3 | | 1+4r=13 | | 6+4x=1/3(6x=9) | | –6x–12=42 | | 5x-10=540 | | 1804n=15 | | 4x+3=2x+71-2x | | 4x-16x+32=0 | | 1=-8+3x | | -40=-4+6m | | 146b^2-2=-3b | | -23=25+6x | | 2-3x+2-3=3-4 | | ((2x)x(2x))-16x+32=0 | | 18=3p+3 | | 101=x+0.23x | | 7x-3(6+2x)=3(x-8) | | v13=2 | | 5x+28=11x-26 | | 25-3x=-10+2x | | 30x^2-50x+60=0 | | 8n+4=9n-12 | | -3(k-6)=9k-30 | | p3−5=3 | | 225+15x=360 | | -5-8h+25=15 | | p3− 5=3 |